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COMPARISON OF SOLUTIONS
OF NONLINEAR EVOLUTION PROBLEMS
WITH DIFFERENT NONLINEAR TERMS

BY
PHILIPPE BENILAN AND J. ILDEFONSO DIAZ

ABSTRACT

We obtain the comparison of solutions (formulated in terms of some functions
of them) of two nonlinear evolution problems with different nonlinear terms.
First this is obtained for the equations u, — A¢, () = 0, and then for the abstract
cquations du/dt+ Au =0 (i =1,2) on a normal Banach lattice. Different
applications of our abstract result are given in the last section.

Introduction

A useful tool in the study of nonlinear parabolic second order equations is the
maximum principle as well as the comparison of solutions. So, if we consider the
porous media type equation

u(tx)—Adp(u(t,x)=0, (Lx)e0,2)xQ,
P(d,u’) =3 o(u(t,x))=0, (t,x)E(0,0)x 3Q,
u(0,x)=u’x), x€Q,
where ¢ is a regular real continuous nondecreasing function and £} is an open set
of R, it is well known (see e.g. [12]) that u{ = uj a.e. in Q implies u,; = u, a.e. in
(0,2)x Q if u; denotes the solution of P(¢,u?), i =1,2. Such a comparison

property can be stated more precisely when P(¢, uo) is reformulated as an
abstract Cauchy problem

% )+ Au(t) =0,
ACP(A, u,)

u(0)=u".
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on the L'() space. This treatment allows the consideration of P(¢, u°) under
weak hypotheses on ¢ and also yields explicit estimates such as

(0.1) It ) = ot ) flereey = [l (S — ) v ae. 1t €(0,),

where h* = max{h,0}. (See Bénilan [3].)

In this article we obtain general comparison results when u®(x) (resp. u®) is
substituted by (¢, u°) (resp. (A, u°)) as the datum in the problem P(¢, u") (resp.
ACP(A, u"). For instance, for P(¢,u’) it is shown that under an adequate
hypothesis we have ¢ (1) = ¢.(u;) ae. in (0,0)xQ if u is the solution of
P(¢:, u;). Such results are of great interest in the study of P(¢, u") because they
provide useful estimates as well as qualitative properties when both are well
known for easier problems P (¢, u"). This method has been already used (in an
implicit way and under strong regularity conditions on ¢ and u,) by Oleinik,
Kalashnikov, and Yui Lin [13] to prove the compactness of the support of the
solution of P(¢, u°). (A general result on this property can be found in Diaz [8].)
The comparison results obtained here allow us to enlighten the scope of such a
method for P(¢, u”) (even under weaker hypotheses than those of [13]) as well as
for a more general class of evolution equations.

This article is divided into three sections. In Section 1 the problem P (¢, u°) is
considered under convenient regularity hypotheses (‘“classical framework”).
Thus, if we suppose ¢ € C*(R) with ¢,>0 and u?€ C(2)N L*(Q), then it is
proved that if

{ é1(ul) = do(ud) (resp. pi(ul) = ¢po(u3))  on L,
0.2)

1= s (resp. ¢ = ¢3) on R, where ¢ = ¢,
and

0.3) Agpr(u3)=0  onQ,
we have

(0.4) Gi1(u) = do(uz)  (resp. di(ur) Z ¢ao(uz))  on (0,20) X Q.

We also show the necessity of the hypothesis (0.3) by means of a counter-
example.

An abstract version of this result is given in Section 2 by considering the
abstract Cauchy problems ACP(A,, u{), i =1,2. This is made in the framework
of the theory of accretive operators on normal Banach lattices. Now the
fundamental hypotheses are
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there exists @ : D(A,;)— X continuous and such that
0.5) { (i) A,y CA,0(y) for every y E D(A,),
(ii) I—© (resp. ® —I) is an order preserving mapping,

and
(0.6) u3€D'(A))  (D'(A)={y ED(A): A;y N X" #2}).
One more time it is possible to explicitly present the estimate
lQua(6) = Bus(t))"[Ix = ||(ut— Ou)|x
(resp. [|(@ux(t) — ()" x =[(Ouz - ud)[x)  ae. tE€(0,)

if u; denotes the solution of ACP(A,, u?).

Finally, in Section 3, applications of our abstract result are given to the case of
several Cauchy problems that are “well posed” in L'(Q2). Specifically, we
consider the ACP(A,, u?)

Au=L($(-,u))

where ¢, : O X R— R is such that ¢ (x, r) is continuous nondecreasing on r and
measurable on x, and L is an (not necessarily linear) operator from L'(Q}) into
L'(Q}). Furthermore, L is assumed to be (essentially) the realization of a
differential operator of order not greater than two. In this way it is possible to
have comparison results for a very general class of problems including P(¢, u°)."
Even some boundary problem associated with the hyperbolic equation
u +¢(-,u). =0 can be visualized as a particular example of the abstract
framework. Other applications of the abstract result to Cauchy problems “well
posed” in the space L™(2) may be found in Diaz [9].

1. A result in the classical framework

Let O be an open set in RY with boundary 40}, 0<T< +, ¢ :R—R,
2:2=10,T[x3Q—R and u’: Q—R. In this section we want to point out a
comparison result, with respect to the data (¢, g, u°), on the solution of the
Cauchy problem

u—A¢p(u)=0 onQ=]0,T[xQ,
CP(¢,8 u") [ u=g on 3,
u(,-)=up on (.

' This appears when L is chosen by D(L)={u € W{'(Q2): — Au € L'(Q)} and then Lu = — Au if
u € D(L). The results of Section 1 correspond to the case of 6v(x)= (' ¢,)(v(x)) for every
vEL'(Q)and ae. x EQ.
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We assume the following regularity on the data:

1) ¢ € C’(R) with ¢'>0 onR,
' 2€G@), u'eG@) withu'=g®,-) onaQ’

By a solution of CP(¢, g, u’) we mean, in this section, a classical solution; that
is, a function u € G,(Q)N C**(Q) satisfying the relations of CP(¢, g, u®)
everywhere on Q, % and Q respectively. We are not concerned about the
existence of such a solution, while it is a classical result under more regularity on
the data (see, for instance, [12] chapter V). We want to compare solutions u; of
CP(¢;, g, u?) when (¢, g, u?) is considered as the datum of the problem for
i =1,2. It is classical (see e.g. [12] pp. 22) that if ¢, = ¢, on R, g: =g, on 3, and
uf = u$ on Q then u, = u, on Q. This implies, in particular, uniqueness of the
(classical) solution of CP(¢, g, u°).

Actually, by changing the function u by w,

w=¢(u),

the problem CP(¢, g, u°) is transformed into
a
F Y(w)—Aw =0 on Q,

CP*(y, h, w°) w=h on 3,
W(O"):wo OHQ,

where ¢ is the inverse function ¢ ' of ¢, h = ¢(g) and w° = ¢ (u°). Moreover,
(¢, h, w°) has the regularity (1.1) and the problems CP(¢, g, u°) and CP*(¢, h, w°)
are equivalent.

Our first comparison result is the following:

THEOREM 1. Let, fori =1,2, (¢, hi, w{) be a datum satisfying (1.1) and w, be
the solution of CP*(¢i, hi, w?). Assume

(1.2) hi=h, onX and wi=w) on Q,
(1.3) Y1 — 3 has a constant sign on R,
(14) ((r at)v(o ot 20onQ and \|o ar ] Mo € G (Q)

where o= +1 or o = — 1 is the sign of ¥5,— 1.

* G, (X) designs the space of continuous and bounded functions on the topological space X.
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Then wi=w, on Q.
Let us make some remarks before proving this theorem.

REMARK 1. A similar result has been used, in some particular cases, as an
argument by Oleinik, Kalashnikov and Yui Lin in [13] (see the proofs of
Theorems 4 and 21).

REMARK 2. About the assumption (1.4) we first remark that such a condition
is also necessary. Indeed, consider the (linear) case of ¢;(r) = a;r with a; >0,
hy=h,=0 and wi=w)=w’ where w’€ G, () is a solution of

Aw’+k-w’=0 on{)
(1.5)

w’=0 on 3Q
for some fixed k > 0. The solution of CP*(¢;,0, w") is
wi(t,x)=e “"“w’(x).

Then it is clear that w,=w, on Q iff (a.—a,)w’=0 on Q, which is the
assumption (1.4) in this particular case. On the other hand, even in this particular
case this assumption is not always satisfied since there exists eigenfunction w*
which changes sign on Q.

ReMARK 3. The assumption (1.4) is satisfied if one of the solutions w = w, or

w = w, satisfies

Iw ow
(1.6) —€G(Q) and o—=0 on Q.

ot ot
The boundness of dw/dt needs additional regularity on the data (see e.g. [12]
chapter V). Let us only show here that the sign condition on dw/at is implied by
a sign condition on the parabolic boundary.’

PROPOSITION 1. Let (4, h, w°) satisfy

¥ € C*(R) with ' >0, h € C(0, T]: G, (3Q)) with
1.7)

g Z00n % and w'e CYQ) with cAw" =0 on Q
where o = * 1 is given. Let w be a solution of CP*(y, h, w") such that dw/dt €
G Q)N C'"™*(Q). Then o - 3w/t =0 on Q.

¥ Results of a similar nature are well known in the literature (see e.g. [7] proposition 5.12 and [11]
chapter II, theorem 4.1).
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As an immediate corollary of Theorem 1 and Proposition 1 we have

CoroLLARY 1. Fori=1,2, let (¢, g, u?) be datum satisfying (1.1) and let u
be a solution of CP(¢, g, u?). Assume

AG(uD=0 on Q and g/t =0 on 3,
Gi(u) = pa(u2)  (resp. i(ud) = $2(u2)) on Q,
®1(81) = $2(g2) (resp. i(g1)Z ¢2(82)) on X and
YIS i (resp. 4iZ i) onR,  where yi = ;.

Then
O1(u1) = Pa(u)  (resp. di(ur) = ¢a(u2)) on Q.

PrOOFOF THEOREM 1. Set w = w,— w,. We have w € G, (Q) N C'*(Q) and
(1.8) w =0 on the parabolic boundary of Q (i.e.on S U {0} x Q)
by (1.2). Now, since for i =1,2

88_‘;4 =qa;Aw; with a; = ¢i(w;)7,

we obtain

aw _ dw, aw
E =a_tl—_a‘t_z = alAW + (al - az)AW2 = azAW +(a1+ az)Awl,

so that we may write for i,j =1,2, i#],

J , , aw;
a_»tv___ a;Aw + (Pi(wr)— ‘ﬁl(Wl))aij‘:)l ;

then, for any A : Q —[0,1]

(19) _(;Ltv — (Aal + (1 _ )\)az)AW + ((/,é(wl)— {ﬂ{(Wl)) (/\d] %4' (1 - )\)az %) .

We may write
Yi(wr)—i(w)= —oc —bw
where

c=o(pi(w)—i(w)z0 on Q

and

Yaw) = ¥awa) v Ve Qi wit, x) £ 0,

w

Pi(wy) on{(t,x)€Q :w(t,x)=0}.
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We remark that the coefficients a,, a2, b and ¢ are in C,(Q). Set v; = dw; /3t and
consider the disjoint sets

{Ol ={(t,x)E Q : v\(t,x)Z 0 and vy(t, x) Z [0, v,(t, x)]},
Q.={(t,x)E Q : v(t,x) =0 and v,(t, x) Z [0, va(t, x)]}.

We have
v = (v1)" A (v2)' on(Q fori=1,2

and then by the first part of (1.4) we have
v1=0,=(01)" A (v2)" on Q=0 —-(Q:N Q).

0 on Q,
A=41/2 on Qg
1 on Q,

Let

and set

o loa 2 = ya, 2
f—a()\al o +(1-A)a; ar)'

By the assumption (1.4) f is nonnegative and bounded on Q. Then with these
notations, (1.8) becomes

w_

Iw =g

alAw +ofbw = —cf =0 on Q,

where a = Aa,+ (1 — A)a, is positive and bounded on Q. We may apply the
maximum principle to the parabolic linear operator £ and derive the conclusion
w =0 on Q by (1.8) (see e.g. [12] page 13).

PrOOF OF PROPOSITION 1.  Set v = odw/dt. We have
(1.10) J'(w =clAw on Q
and then by continuity
(1.11) v(0,-)=¢'(W) 'cAw’=Z0  on Q.
We also have
oh

1.12) v=o-E§0 on 3.

Now, by differentiating (1.9) we have

Ww o+ (W) 52 = Ao,
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that is

=22 qAv+bo =0,
ot

witha = ¢ '(w)"'>00n Q and b = ¢'(w)™'¢"(w)v. Since a, b € G, (Q) we may
apply the maximum principle to the parabolic operator & and derive the
conclusion v Z0 on Q from (1.11) and (1.12).

The main restriction of these results is the regularity needed to apply the
classical maximum principle. In the next sections we want to show that we can
obtain such comparison results without any regularity as well as showing that we
can obtain estimates.

2. A result in the abstract framework

Let X be a Banach space of norm |- ||. By an operator in X we mean a graph A
in X X X which is identified with the multi-application A : X — ?(X) given by
Au={v € X :(u,v)E A} for u € X. We define the (effective) domain of A as
the set D(A)={u € X : Au#}. Given A an operator in X, fEL'(0, T : X)
and u’ € X, by a strong solution of the abstract Cauchy problem

du
{E+Au 3f

u@y=u’

ACP(A, f,u")

we mean a function u € C([0, T}: X) N Wii(]0, T[; X) such that
du
ar O+ Au()3f(1) a.e. t €0, T|

and u(0)=u’. By a mild solution of CP(A,f,u") we mean a function u €
C(]0, T]: X) satisfying:

For every & >0, there exists a subdivision O=g¢<a,<---<a,=T,
Woy Uy, -+, U, and fi, -+, f, such that

[ U — U;- .
——E—lJrAu,-Bf,- fori=1,---,n,
a; — a

maX (a,' - a.'fl) = £,
i

2.1 { max max |u(t)-ul=e,
i t€la;_y.q;)

S [" Iro-fla=e,

L Ju’— ol = e.
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We remark that a mild solution of ACP(A, f, u) has values in E(A_) and one
can show that a strong solution is a mild solution (see [4]). Under hypotheses of
accretiveness (see the later definition) and range conditions the existence and
uniqueness of a mild solution of ACP(A,f,u°) is well kriown: this is the
Crandall-Liggett theorem and its generalizations (see e.g. [3] and [4]).

Before stating our comparison result for ACP(A, f, u") we need some auxiliary
definitions to determine with precision the abstract framework. We will assume
that X is a Banach lattice"; this means that X is endowed with a closed cone X*
(of the nonnegative points of X) which define the order in X given by

HW=u, & u,—u,EX",
and such that for u,, u, € X there exists (a unique) u; v u, € X satisfying
uisuand w,Su S u v =u
Also we will assume that X is normal in the sense that
2.2) le"=llo] and Ju |={o”| = Jull=lv]

where u"=uvQOand u =(—u)".
We recall that an operator in X Banach space (resp. X Banach lattice) is said
to be accretive (resp. T-accretive) in X if

= — u)+ A (v, — v)
(2.3) (resp. [ (ur = ws) | = [~ u2) + A (01 = 02)]"]])
V(ui,v)),(u;02) €A and VA >0.

o= u,

By (2.2) it is clear that every T-accretive operator in a normal Banach lattice is
also an accretive operator. We will give some examples of such operators in the
next section.

Finally, we introduce the notation

(2.4) D' (A)={uE€DA): AunNX"#g}"

(if A is an operator in X) and also the following definition: an application
G :D C X— X is said to be order preserving if

u, U, €D, U =u, > Gu, = Gu..
We may now state the abstract result.
* This is the case of X = L{Q) (1 =p = +») with 3 general measurable set.

"If X =Lr(Q) (1 =p = +) with 0 open set in RY and A is the linear operator A defined on
D(A)={ueL"(Q):Auec L7 (Q)}, D*(A) is the set of superharmonic functions of D(A).
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THEOREM 2. Let A, A be T-accretive operators in X, f €L'0, T : X), u®,
4°E X and u, & be mild solutions of ACP(A, f,u"), ACP(A,0, i respectively.
Let ®:D(A)— X be continuous. Assume

(2.5) R(I+AA)= U (@i+AAu)D D*(A), VA>0,
a2eD(A)

(2.6) i°eD*(A),

@.7) ACA® (ie Al C A®iforeveryi € D(A)),

(2.8) I-0 (resp.®—1I) isorderpreserving.

Then for every t €[0, T].

(o) - Oacy I =N - 0ay |1+ [ Nty ldr

2.9) ,
(resp. 1@a () - u Oy 1= 1@~y 1+ [ N7(r) 1)

In particular, if u’=04° (resp. O4°=u’) and f=0 (resp. f=0) then u(t)=
Ou(t) (resp. OU(t)= u(t)) for every t €[0, T}

Proor. Let £>0. Consider a subdivision 0=¢g¢<---<a,=T and
Uo,* " s Un, f1,*  *ufa in X satisfying (2.1). By (2.6), for 6 >0 let 1i, € D*(A) be
such that |i,— #°)= 8. Using (2.5), for 2 ED*(A) and A >0 there exists
%, €ED(A) such that %, +AA%, Dz Thus if 4 belongs to A% N X* by the
T-accretiveness of A we have

-5 o

$=3, and 2, €D*A).

I -2l

that is,

Then, starting from iy, by recurrence on i = 1,- - -, n we may define &; € D*(A)
such that

U+ (ai - ai—l)Aai 3 b
and then we have

(2.10) tho

(%

A
ulg...

I
1Y

b

Set w; = Oi;. By (2.7) we have

(2.11) W; + (a,' - a,'_1)AW,‘ 9 = lji_l + w;, — 12,'.
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But by (2.8) and (2.10)
(2.12) v = (I - @)ﬁj—l - (I - 0)12, + W.-_lé W.--l (resp. U; = Wi_l).

On the other hand
u +(a — ai-)Au; Du +(a: — ai)fi

and then from the T-accretiveness of A and (2.11) we have
G = w) = l[si-s — v + (@ — @) £
(resp. [|(wi — ) || = [v: — (a — @) fi — wia]"|).

So by (2.12)
G — wiy = | (i — wi) ||+ (a - a )| f7

(resp. [|(wi — w)"[| = | (Wees = wit)* |+ (@ — @) 71D
It follows that
I = w) U= o= wol I+ 3 (@ = ac-)lfi]
(2.13) ,.
(resp- 10w = w) U=l owvo= uoy I+ 3, (= aulfill).
Now, by the Crandall-Liggett theorem (see [6])

172 "
max max ||4(t)— 4| =|a°- dof+ I:m;dX (a: — a,»_l)] T -inf{||d|: 6 € Adio}

i t€a;-ya]
and then using the continuity of ©
max max [O4(1)—Ou[=p(e,8) with lim lim p(z, 8) = 0.
Then, using the estimates of (2.1) we obtain (2.9), passing to the limit in (2.13)
when ¢ -0 and 6 — 0.

ReMARK 4. Theorem 2 is one of the results we may obtain in this abstract
framework. It does not cover all the circumstances of Theorem 1; for this we
should have to use evolution equations of the general type

Z—I:(t)+A(t)u(t)90

governed by operators A (t) depending on the time variable t. We leave the
reader to obtain more general statements by meeting the above arguments and
the theory of general evolution equations.
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3. Examples

In this section we want to give some applications of Section 2 to several
Cauchy problems that are “well posed” in L'(Q) and, in particular, to certain
formulations which contain those in Section 1.

We recall that if {) is a general measure space with nonnegative measure, an
operator A in L'(Q) is T-accretive iff

f Vi— U2 + f (U1 - ‘Dz)+ =0 V(ul, U1), (uz, 02) S A,
[ u,] [u1=u,]

where [u > 0] (resp. [u =0]) is the set {x EQ: u(x)>0 (resp. u(x)=0)}. (See
e.g. [3])

In order to obtain a general class of T-accretive operator in L'(Q), let us
denote by L(£2) the linear space of all the measurable functions defined a.e. on
and by L an (not necessarily linear) application from D(L)C L(f) into L'(€2)
satisfying

(3.1) f LW1—LWz§J (IIW1-'14W2)+ VW1, WzED(L)
[wi>w,] [wi=w.]

(we will give below examples of such a class of operators). Let also ¢ : ) X

R— 2(R) be monotone with respect to r, i.e.,

(3.2) n<r; : S1 = s, ae. xe& Q, Vs1 < ¢(x, rl), = ¢2(x, rz).

Then it is easy to see that the operator A = L¢ is T-accretive in L'(Q2) when L
is naturally defined by its graph:

Lo ={(u,v)EL'( Q)X L'(Q); Aw ED(L), v € Lw and
3.3
(33) w(x)E d(x,u(x)) ae. x €Q}.
In order to apply Theorem 2, we consider a function @ : D(®)C QI xR—-R
satisfying

( (i) forae. x €Q, D,(®)={r:(x,r)€ D(®)} is a closed set in
R and the application r — ®(x, r) (defined on D, (®)) is con-
tinuous,

(ii) for every r€R, Q,(®)={x:(x,r)ED(®)} is a measura-
ble set in {} and the function x — ®(x, r) (defined on , (®)) is
measurable,

(i) [®(x,r)|=c(x)+co|r|, V(x,r)ED(®), for some ¢ €
[ L'(Q) and ¢, =0.

(34)
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Then the application ©: u —® (-, u) defined on
D@®)={ueL'(Q):(x,u(x))ED(®)a.e. x €Q}

is continuous from D(®) into L'(Q).
We may now state the following version of Theorem 2 which is an immediate
corollary from the above considerations.

THEOREM 3. Let L:D(L)CL(Q)—L'Q), ¢, é:QXR—>PR) and
B@:D(®)COXR—>R satisfying (3.1), (3.2) and (3.4) respectively. Let also
fELY0, T:L'(Q)), u°,a° € L'(Q) and u, 4 be mild solutions of ACP(Lg, f, u°)
and ACP(L,0,i°) respectively. Finally, assume

(3.5) R(I+AL$)D D*(Ld) VA >0,

(3.6) i€ D(L),

(3.7) D@$)CD(®) and é(xr)Cd(x®(xr) VY(x,r)ED($),
3.8)r € D.(®)— r —B(x,r) is nondecreasing (resp. nonincreasing) a.e. x €.

Then for every t €]0, T]
| wo-ecawys| w-acay [ | fora

(resp. | @C.an-uiy =] @c.a0-wy+[ | foyar).
Q 0 Q Ja

REMARK 5. The assumptions (3.7) and (3.8) generalize the condition (1.3) of
Theorem 1. Indeed, for ¢, $ : Q@ x R— P (R), (3.7) leads to
(3.9) ®(x,r)E Y (x, (x,r))¥(x,r) € D($)(D($)C D(®))
where ¢ : QA XR— P (R) is defined by
(3.10) rey(x,s)o s €dix,r)
For simplicity, let now ¢, é € C'(R) with ¢'>0 and ¢’ >0 on R. Then (3.9) is
equivalent to @ = ¢ o and (3.8) is satisfied iff

@) =¢' (¢ (r)d'(r)=1 (resp. =1) VreR.
That is )
'S (resp. ¢ 2 )

which is condition (3.1) of Theorem 1.
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As a particular corollary of Theorem 3 we state now the comparison between
the solution of ACP(L¢,0, 4°) and those ARP(L,0, ¢ (u")).

COROLLARY 2. Let L:D(L)C L(Q)— L'(Q) satisfying (3.1) and
(.11) RUI+AL)D D*(L) VA >0.

Let ¢ : O x R—R satisfying

r— (x,r) is nondecreasing Lipschitz continuous of constant k

X = Y(x,r) is measurable for every r ER,
(3.12) [
(independent of x) and ¢(x,0)=0 for a.e. x €Q.

Let ¢ : A X R— P (R) defined by (3.10). Finally, let w® € D*(L) and w, u be mild
solutions of ACP(L,0, w"), ACP(L¢,0, u°) respectively where u°(x) = s (x, w°(x))
a.e. x €Q. Then

u(t,x)éw(x,w(zt,x)) V=0, ae xeE.

Proor. It suffices to apply Theorem 3 to the choices
(x, r)=Er , B, r)=¢ (x, 7:—) , Uo(x)=Kw’(x) and i(t,x)=kw (Et , x) .

(It is easy to check that really & is a mild solution of ACP(L¢,0, 4°).)

REMARK 6. Let us now discuss the range condition (3.5). More generally we
will comment on the range of I + L¢ (i.e., for greater simplicity in the notation
we replace ¢ by ¢ and AL by L). From the definition of the operator L we have
for a given f € L'(Q):

fER(I+Lo)® ueLlL'(Q)andw €D(L)

(3.13) feutm

w(x)€ ¢(x, u(x))
The simplest way to solve (3.13) is to use the inverse graph ¢ of ¢ defined by
(3.10), since (3.13) leads to

solutions of { ae. x €.

fEuU+tLw, u(x)Ey¢(x,w(x) ae. xe€.

In others words
fER(I+Lo)S fERW+L).

This is the objective of the Brézis-Strauss Theorem ([5]) and its generalizations

(see [1], [4]).
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ExaMmpLE 1. As a typical example of operator L we have
(314) L =-A definedon D(L)={w &€ Wi'(Q): Aw € L'(Q)},

where ) is a bounded open set in RY with smooth boundary 4. For this
operator the Cauchy problem ACP(L4, f, u°) leads to

u—A¢p(,u)Df onO,
(3.15) o(-,u)30 on 3,
u(@©,-)=u’ on Q.

For f=0 this is the Cauchy problem CP(¢,0,u°) of Section 1. The main
difference with the above formulation is that now we need no regularity on the

data (o, f, u°).

In this example the range condition
(3.16) RUI+AL$)=L'(QQ) VA>0

is satisfied under two kinds of hypothesis:

Case 1. ¢ is any maximal monotone graph in R” independent of x and with
0€ R(¢). Then (3.16) is the result of [5].

Case 2. ¢ is given by (3.10) with ¢ : Q Xx R— Rsatisfying, e.g., the condition
(3.12) in which case (3.16) is obtained in [1] (section 2).

By using extensions of the Brézis—Strauss Theorem, we can apply our
Theorem 3 to Cauchy problems more sophisticated than (3.15). For instance:

(a) the Dirichlet boundary condition may be replaced by a nonlinear bound-
ary condition of the type

901y, 4(,u)30  onZ
(see [3]);

(b) the Laplacian operator A may be replaced by a nonlinear one like the
generalized Laplacian

Nog
& =3

(see [1] and [10]);
(c) the open set ! may not be assumed bounded like Q= R" (see [2]).

a .

ax;

P

ax;

) fori<p<w

ExampLE 2. Let Q=]a,b[ and consider L given on X = L'([a, b]) by

D(L)={u € C({a,b]): u(0)=0and u is absolutely continuous}
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and

Lu=—x if u € D(L).

Thus L is an accretive operator, in L'([a, b]), and given ¢ satisfying (3.2) it is
easy to see that hypothesis (3.16) holds (see e.g. [6] or [3]). Then the
ACP(L¢g, f, u°) leads to

u+é(-,u).df onl0, T[x]a,bl,
3.17) ¢(a,u(t,a))20 forte]0, T,
u@©,-)=1u’ on ]a, bl.

Once more, Theorem 3, Remark 5 and Corollary 2 can be applied to the
problem (3.17), now of a hyperbolic character. The hypothesis (3.6) pointed out
that i, must be a nondecreasing function (it is very easy to have counterexam-
ples which show the necessity of such a condition). On the other hand, we recall
that even for smooth data (¢, f, u°) the problem (3.17) does not have a classical
global solution, and then the mild solutions satisfy the equation in an adequate

sense already pointed out by Kruskov (see e.g. [3] for this coincidence when
Q=R").
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