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ABSTRACT 

We obtain the comparison of solutions (formulated in terms of some functions 
of them) of two nonlinear evolution problems with different nonlinear terms. 
First this is obtained for the equations u, - A,;b~ (u) = 0, and then for the abstract 
cquations du/dt+A,u =0 (i = 1,2) on a normal Banach lattice. Different 
applications of our abstract result are given in the last section. 

Introduction 

A useful  tool  in the  s tudy of non l inea r  pa rabo l i c  second  o r d e r  equa t ions  is the  

max imum pr incip le  as well as the compa r i son  of solut ions.  So, if we cons ide r  the  

porous  med ia  type  equa t ion  

u , ( t , x ) - A 6 ( u ( t , x ) ) = O ,  

P(dg, u") = d~(u(t,x))=O, 
u(O,x) = u~ 

(t,x) ~ (0,oo) • ~, 
( / , x )  E ( 0 , ~ )  • 0 fL  

x E f ~ ,  

where  d' is a r egu la r  real  con t inuous  nondec rea s ing  funct ion  and 12 is an open  set 

of R N, it is well  known  (see e.g. [12]) that  u ~ =< u ~ a.e.  in f~ impl ies  u~ =< u2 a.e. in 

( 0 , o . ) •  if u~ deno t e s  the so lu t ion  of P(~b,u~ i= 1,2. Such a c ompa r i son  

p r o p e r t y  can be s ta ted  more  prec ise ly  when  P(~ ,Uo)  is r e f o r m u l a t e d  as an 

abs t rac t  Cauchy  p r o b l e m  

ACP(A'u~ [ -~tt (t)+ (0) = u . 
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on the L~(II) space. This treatment allows the consideration of P(~b, u ~ under 

weak hypotheses on ~b and also yields explicit estimates such as 

(0.1) I[(Ul(t,')--u2(t,'))+IIL'<.)<=II(uV--UT)+IIL'(.) a . e .  t E (0 ,oo) ,  

where h += max{h,0}. (See B6nilan [3].) 

In this article we obtain general comparison results when u~ (resp. u ~ is 

substituted by (~b, u ~ (resp. (A, u~ as the datum in the problem P(~b, u ~ (resp. 

ACP(A,  u~ For instance, for P(~b, u ~ it is shown that under an adequate 

hypothesis we have 4,1(Ul)~ ~b2(u2) a.e. in ( 0 , ~ ) x i )  if u~ is the solution of 

P(th~, u~). Such results are of great interest in the study of P(th, u ~ because they 

provide useful estimates as well as qualitative properties when both are well 

known for easier problems P(q~, u~ This method has been already used (in an 

implicit way and under strong regularity conditions on tb and u0) by Oleinik, 

Kalashnikov, and Yui Lin [13] to prove the compactness of the support of the 

solution of P(~b, u~ (A general result on this property can be found in Diaz [8].) 

The comparison results obtained here allow us to enlighten the scope of such a 

method for P(~b, u ~ (even under weaker hypotheses than those of [13]) as well as 

for a more general class of evolution equations. 

This article is divided into three sections. In Section 1 the problem P(~b, u ~ is 

considered under convenient regularity hypotheses ("classical framework"). 
Thus, if we suppose &, E C2(R) with ~b'~> 0 and u ~  C(I~) A L~(f~), then it is 

proved that if 

(0.2) 

and 

(0.3) 

we have 

(0.4) 

ch,(u'~) <= ch2(u~) (resp. &,(u~) _-> 4~2(u~)) on 1~, 

~ _-< qJ~ (resp. ~', => ~0~) on R, where qJ~ = 4~-', 

Ath2(u~) =< 0 on 1), 

~b,(ut)<-_c~2(u2) (resp. ~b,(u,)>=~bz(u2)) on (0, oo)• 

We also show the necessity of the hypothesis (0.3) by means of a counter- 

example. 

An abstract version of this result is given in Section 2 by considering the 

abstract Cauchy problems ACP(A~, u~J), i = 1,2. This is made in the framework 

of the theory of accretive operators on normal Banach lattices. Now the 
fundamental hypotheses are 
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there exists O : D ( A z ) ~ X  continuous and such that 

(0.5) (i) A2y C A~O(y) for every y E D ( A z ) ,  

(ii) I - O  (resp. O -  I)  is an order preserving mapping, 

and 

(0.6) u ~  ( D + ( A z ) = { y  E D ( A ) : A 2 y  A X + # O } ) .  

One more time it is possible to explicitly present the estimate 

I I (u , ( t ) -  eu=(t))+llx _<_ II(u ~  OuO)+llx 

(resp. I I (e .=( t ) -  u,(t))+llx --< II(eu ~  .~ a.e. t E (0, oo) 

if u, denotes the solution of ACP(A,, u~ 
Finally, in Section 3, applications of our abstract result are given to the case of 

several Cauchy problems that are "well posed" in Ll(f~). Specifically, we 
consider the ACP(A,, u ~ 

A,u  =- L (th, ( ' ,  u)) 

where $~ : f~ x R---, R is such that ~b~ (x, r) is continuous nondecreasing on r and 

measurable on x, and L is an (not necessarily linear) operator  from L~(I~) into 

L~(f~). Furthermore,  L is assumed to be (essentially) the realization of a 

differential operator  of order not greater than two. In this way it is possible to 

have comparison results for a very general class of problems including P(~b, u~ ~ 

Even some boundary problem associated with the hyperbolic equation 

u, + ~b(-, u), = 0 can be visualized as a particular example of the abstract 

framework. Other applications of the abstract result to Cauchy problems "well 

posed" in the space L=(f~) may be found in Diaz [9]. 

1. A result in the classical framework 

Let 1~ be an open set in R N with boundary 01), 0 <  T <  + ~ ,  4) :R---~R, 

g : X  = ]0, T[ x Ol~---> R and u ~  In this section we want to point out a 

comparison result, with respect to the data (4),g, u~ on the solution of the 

Cauchy problem 

{ u , - m ~ b ( u ) = 0  on O = ] 0 ,  T [ x l ~ ,  

CP(~b, g, u ~ u = g on X, 

u (0 , ' )  = Uo on 1~. 

* This appears when L is chosen by D(L) = {u E W~"(I'~) : - Au ~ L'(I~)} and then Lu = - Au if 
u ~ D(L). The results of Section 1 correspond to the case of Ov(x) = (d); ~" d#2)(v(x)) for every 
v ELZ(fl) and a.e. x~l~. 
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We assume the following regularity on the data: 

(1.1) I t h E C 2 ( R )  w i th~b '>0  o n R ,  

t g E C b ( ~ ) ,  u ~  with u~ .)  on &fL* 

By a solution of CP(th, g, u ~ we mean, in this section, a classical solution; that 

is, a function u E C~(t))fq CL2(Q) satisfying the relations of CP(th, g,u ~ 

everywhere on Q, ~ and f~ respectively. We are not concerned about the 

existence of such a solution, while it is a classical result under more regularity on 

the data (see, for instance, [12] chapter V). We want to compare solutions ui of 

CP(~bi, g,, u ~ when (~b~, g,, u ~ is considered as the datum of the problem for 

i = 1,2. It is classical (see e.g. [12] pp. 22) that if 4)1 = ~b2 on R, gl --< g2 on E and 

u~ u ~ on ~ then u~ _-< u2 on Q. This implies, in particular, uniqueness of the 

(classical) solution of CP(th, g, u~ 

Actually, by changing the function u by w, 

w = 4 , ( u ) ,  

the problem CP(~b, g, u ~ is transformed into 

{ ~ O ( w ) - A w = 0  o n Q ,  

CP*(0, h, w ~ w = h on ~, 

w(0, . )  = w ~ on f~, 

where 0 is the inverse function 4) -1 of ~b, h = ~b(g) and w ~  4~(u~ Moreover, 

(~b, h, w ~ has the regularity (1.1) and the problems CP(th, g, u ~ and CP*(0, h, w ~ 

are equivalent. 

Our first comparison result is the following: 

THEOREM 1. Let, for i = 1,2, (~b~, h~, w ~ be a datum satisfying (1.1) and w, be 

the solution of CP*(th,, h,, w~ Assume 

(1.2) h~<=h2 on "2, and w~ ~ on ~,  

(1.3) ~ - ~ has a constant sign on R, 

I owl  I aw2  , t owq+ ( o w q  + 
(1.4) ~ o - d ] v ~ o r - d } = ~ o n O  and \ --~-! ^ \  Ot !  ~ C b ( O )  

where or =- + 1 or o r -  - 1 is the sign of ~ ; -  ~ .  

* cb (x) designs the space of continuous and bounded functions on the topological space X. 
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Then w~ <= W2 o n  Q. 

Let  us make  some  r emarks  be fo re  prov ing  this t heo rem.  

REMARK 1. A similar result  has been  used, in some  par t icular  cases, as an 

a rgumen t  by Oleinik,  Ka lashn ikov  and Yui Lin in [13] (see the proofs  of 

T h e o r e m s  4 and 21). 

REMARK 2. A b o u t  the assumpt ion  (1.4) we first r e m a r k  that  such a condi t ion 

is also necessary.  Indeed ,  consider  the (linear) case of ~b~ (r)  = a,r with a, > 0, 

hi = h2 = 0  and w ~ = w ~  w ~ where  w ~  Cb(~ )  is a solut ion of 

I A w ~ 1 7 6  o n ~  

(1.5) [ w ~ = 0 on 0 f~ 

for  some fixed k > 0 .  The  solut ion of CP*($~,0,  w ~ is 

w, (t, x )  = e-k"~ ). 

Then  it is clear that  w~<-_w2 on Q iff (a2-aOw~ on f~, which is the 

assumpt ion  (1.4) in this par t icular  case. On  the o ther  hand,  even in this par t icular  

case this a s sumpt ion  is not always satisfied since there  exists e igenfunct ion w" 

which changes  sign on IL 

REMARK 3. The  assumpt ion  (1.4) is satisfied if one of the solut ions w = Wl or 

w = w2 satisfies 

(1.6) Ow a t  E Cb(O) and o-C~w_->0 on O. 
~t 

The  boundness  of c~w/c~t needs addi t ional  regular i ty  on the data  (see e.g. [12] 

chapte r  V). Le t  us only show here  that  the sign condi t ion on cgw/c~t is implied by 

a sign condi t ion on the parabol ic  boundary.* 

PROPOSITION 1. Let (~b, h, w ~ satisfy 

f 
~b @ C2(R) with ~b'> 0, h E CJ([0, T ] :  Cb ( c ~ ) )  with 

(1.7) 0h wOE - 
tr-~>-_O on Y~ and C~(f~) with crAw~ on ~1 

where ~r = +_ 1 is given. Let w be a solution of CP*(~b, h, w ~ such that Ow/Ot E 

Cb( f i )~  Cl'2(O). Then ~r . Ow/Ot >=0 on O. 

' Results of a similar nature are well known in the literature (see e.g. [7] proposition 5.12 and [11] 
chapter II, theorem 4.1). 
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As an immediate  corollary of Theorem 1 and Proposit ion 1 we have 

COROLLARY 1. For i = 1,2, let (~b,,gi, u ~ be datum satisfying (1.1) and let ui 

be a solution of CP(~b,, g~, u~ As sume  

A~b2(u ~  on l-I and Og2/cgt<=O 

~bl(u~) <= qb2(u ~ (resp. ~bl(U~) -> ~b2(u~ 

on "~, 

on ~, 

61(g~)---- 62(g2) (resp. ckl(g~) >= ck:(g2)) on X and 

4t'~ <= ~ (resp. ~ '1 >- 6~) on R, where 6, = r 7 ~. 

by (1.2). Now, since for i = 1,2 

we obtain 

OW___2i = a, Aw, with a, = ~0;(w,) -1, 
3t 

Ow OWl c9W2 
Ot Ot Ot 

- -  = a , A w  + (a, - a2)Aw2 = a2Aw + (a~ + az)Aw,, 

so that we may write for i,/' = 1, 2, i #  j, 

O--Ew = a, Aw + (qJ~(w2)- 4J'l(W,))a, Owj. 
3t 0t ' 

then, for any A : Q ~ [0, 1] 

Ow ( ~w~+(l_A)a~ Owl] 
(1.9) ~ = (Aa, + (1 - A)a2)Aw + (q,;(w~)- q,'~(w,)) ,.Aa' ~ Ot ] " 

We may write 

where 

and 

b = 

q'~(w2)- ~O'l(w,) = - orc -- bw 

t ~ c = o'(~b;(w,)- ~2 (wl ) )=0  on Q 

{ 6;(w1)- ~'(w2) 
w 

~'~(W2) 
on  {(t ,x)  E O : w(t,x)#O}, 

on  { ( t , x ) E  O : w(t,x)= 0}. 

Then 

~bl(ul)_ -< ~b2(u2) (resp. c~l(ul)>= qb2(u2)) on Q. 

PROOF OF THEOREM 1. Set w = w l -  w2. We have w E C b ( O ) N  C " 2 ( Q ) a n d  

(1.8) w < 0 on the parabolic boundary  of Q (i.e. on E tO {0} x 1~) 
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We remark that the coefficients a~, a2, b and c are in G( (~ ) .  Set v~ = aw~/at and 

consider the disjoint sets 

{ ~ 1 2 ~ { ( t , x ) ~ O : V l ( t , x ) > = O a n d  v2( t ,x )~[O,v~( t ,x )]} ,  

{(t,x) E Q : v2(t ,x)>-O and v l ( t , x ) f~  [0, rift, x)]}. 

We have 
v~=(v , )  +^(v2)  + o n Q ,  f o r i = l , 2  

and then by the first part of (1.4) we have 

v, = v2 = (v,) + ̂  (v2) + on Oo = O - (O, f3 O2). 

Let {yon~ 
A = /2 on Oo 

on Q2 

and set 

+ (1 - A )a2 
aw2 awl] 

f = or Aa~ --~- at / " 

By the assumption (1.4) f is nonnegative and bounded on Q. Then with these 

notations, (1.8) becomes 

aw 
~ w  - -ff[ - a A w + trfbw = - cf  <= O o n Q ,  

where a = Aa~ + ( 1 - A ) a 2  is positive and bounded on O. We may apply the 

maximum principle to the parabolic linear opera tor  ~ and derive the conclusion 

w - 0  on O by (1.8) (see e.g. [12] page 13). 

PROOF OF PROPOSITION 1. Set v = o-aw/at. We have 

(1.10) ~ ' ( w ) v  = trAw on O 

and then by continuity 

(1.11) 

We also have 

Oh > 
(1.12) v = tr-~- = 0 on E. 

Now, by differentiating (1.9) we have 

av 
~o"(w )v2 + q/(w ) -~ = Av, 

v(0,. )=  4,'(w~176 0 on ft. 
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that  is 
Ov Lev =-- ~ - a A v  +by = 0 ,  

with a = 4' ' (w)  -1 > 0 on Q and b = $'(w)-'~"(w)v. Since a, b E C~ ( 0 )  we may  

apply  the m a x i m u m  principle to the parabol ic  o p e r a t o r  ~ and der ive  the 

conclusion v - 0  on O f rom (1.11) and (1.12). 

The  main  restr ict ion of these results is the regular i ty  needed  to apply  the 

classical m a x i m u m  principle.  In the next sections we want  to show that  we can 

obta in  such compar i son  results wi thout  any regulari ty as well as showing that  we 

can obta in  es t imates .  

2. A result in the abstract framework 

Let  X be a Banach  space of norm I[" II. By an operator in X we mean  a graph  A 

in X • X which is identified with the mul t i -appl icat ion A :X- ->  ~ ( X )  given by 

Au = { v  E X : ( u , v ) E A }  for  u E X .  We define the (effective) domain of A as 

the set D ( A ) = { u  E X : A u # ( ~ } .  Given  A an o p e r a t o r  in X, f E L ' ( O , T : X )  
and u" ~ X, by a strong solution of the abs t rac t  Cauchy  p r o b l e m  

ACP(A, f, u~ { ~t + Au ~ f 
u ( 0 )  = u ~ 

we mean  a funct ion u E C([0, T] : X )  n WI,;Ic(]0, T[;  X )  such that  

du 
d-t ( t ) + A u ( t ) ~ f ( t )  a.e. t E ]0, T[  

and u ( 0 ) =  u ~ By a mild solution of C P ( A , f , u  ~ we mean  a funct ion u E 

C([O, T ] : X )  satisfying: 

For  every  e > 0 ,  there  exists a 

uo, u~," .-,  u, and f t , . - . , f ,  such that  

(2.1) 

subdivision 0 = ao < a l < �9 �9 �9 < a .  = T, 

u~ - U~_l t- Au~ D f~ for  i -- 1,. �9 n, 
a i  - -  a i  1 

max (a, - a, ,) < e, 

m a x  m a x  ]]u(t)-u,]]<-_e, 
i tCZ[a i i , a i ]  

Ilf(t) - f, II dt <= e, 
i 1 
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We remark  that a mild solution of A C P ( A , f ,  u)  has values in D ( A  ) and one 

can show that a s trong solution is a mild solution (see [4]). Unde r  hypotheses  of 

accretiveness (see the later definition) and range condit ions the existence and 

uniqueness of a mild solution of A C P ( A , f , u  ~ is well kriown: this is the 

Crandal l -Ligget t  theorem and its general izat ions (see e.g. [3] and [4]). 

Before  stating our  compar ison  result for ACP(A, f ,  u ~ we need some auxiliary 

definitions to determine with precision the abstract  f ramework .  We will assume 

that X is a Banach latticet; this means that  X is endowed  with a closed cone X + 

(of the nonnegat ive  points of X)  which define the order  in X given by 

Ul ~ Uz r u2-  ul E X +, 

and such that for u~, u2 E X there exists (a unique) u~ v u2 E X satisfying 

u]<=u a n d u ~ < = u C ~ u ~ v u z < = u .  

Also we will assume that X is normal in the sense that 

(2.2) 1[. +11 -< II v '  II and II u II -< II v-II ~ II u II =< Ir v II 

where u + = u v 0 a n d  u = ( - u ) + .  

We recall that  an opera to r  in X Banach space (resp. X Banach lattice) is said 

to be accretive (resp. T-accret ive)  in X if 

t II. _ .211__< ii(u, _ u2)+ .~(v  _ v2)l I 
(2.3) (resp. tl (u, - u_,) ~ II =< II [(u, - u:) + ,~ (v, - v2)] + II) 

V(u,,v,) ,(ue, v 2 ) C A  and V a . > 0 .  

By (2.2) it is clear that every T-accret ive opera to r  in a normal  Banach lattice is 

also an accretive opera tor .  We will give some examples of such opera tors  in the 

next section. 

Finally, we int roduce the notat ion 

(2.4) D + ( A )  = {u ~ D ( A  ) : Au  n X +# 0}** 

(if A is an opera to r  in X )  and also the following definition: an application 

G : D C X--~ X is said to be order preserving if 

u~, u2 E D, u~ <= u2 ~ GuI -<_- Gu2. 

We may now state the abstract  result. 

' This is the case of X = LP(~I) (1 _-<p ~ +o~) with II a general measurable set. 
" If X = LP(f~) (l _-<p ~ +~) with ~ open set in R ~ and A is the linear operator & defined on 

D(A )= {u E L e (ft) : 2Lu E L" (1~)}, D+(A) is the set of superharmonie functions of D(A). 
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THEOaEM 2. Let A,  /~ be T-accretive operators in X, [ E L I ( O , T : X ) ,  u ~ 

~~  X and u, t1 be mild solutions of ACP(A, / ,  u~ ACP(fi,,0, fo) respectively. 

Let 0 : D ( A  )---> X be continuous. Assume 

(2.5) R(I+Afi,)= U (f+xAu)zD+(A), v x > 0 ,  
a~D(A) 

(2.6) ti ~ E O +(,4 ), 

(2.7) fi, C A |  (i.e. A f  C A ~)f [or every fi E D ( A  )), 

(2.8) I - | (resp. | - I )  is order preserving. 

Then for every t E [0, T]. 

(2.9) 

f II(u(t))- o f  (t))+ll ~ II(u ~  of~ + fo' IIf(z)+ II d7 

(resp. II(ef(t)-u(t))+ll<=ll(ec, ~ u~ + fo' IIfO)-IId~) �9 

PROOF. Let e > 0 .  Consider a subdivision 0 = a o < . . . < a , = T  and 

Uo,'" ", u,, f l , ' "  ",,L in X satisfying (2.1). By (2.6), for 6 > 0 let fo E D+(fi,) be 
such that Ilfo-ti~ < &  Using (2.5), for ~ , E D + ( A )  and A > 0  there exists 
~, E D(fi , )  such that ~.~ + Afi,~, D z. Thus if t3 belongs to fi,,~ n X + by the 

T-accretiveness of A we have 

that is, 
~_->~?, and i ~ E D + ( A ) .  

=0 ,  

and then we have 

(2.10) 

Then, starting from 1]o, by recurrence on i = 1 , . . . ,  n we may define f~ E D § 

such that 

~i, + (a, - a,_~)Af, 9 f,_~ 

fo_-> fl_->...__> f , .  

Set wi = Ofi. By (2.7) we have 

(2.11) w~ + (a~ - a~_~)Am D v~ =- fii-1 + w~ - f ,  

In particular, i]: u~174 ~ (resp. | u o) and f<-<_O (resp. [>=0) then u(t)<= 

Off( t)  (resp. eft(t)<= u(t))  for every t E [0, T]. 
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But by (2.8) and (2.10) 

(2.12) v, = ( I  - • - (I - 0)fi, + if,_,_--- ~,,_, 

On the other hand 
u, + (a, - a,_l)Au, ~ u,-1 + (a, - a,-1)/~ 

and then from the T-accretiveness of A and (2.11) we have 

II(u, - w,)+ll--< I l I u , - , -  v,  + ( a ,  - a, ,)/,]+11 

(resp. II(w, - u,)+ll =< I1[o, - (a, - a , _ , ) f ,  - u,_,]+ll). 

So by (2.12) 

(resp. vi =< Wi-1). 

I1(., - w,)+ll =< I I (u , - , -  w . - , ; l l  + (a, - a , - , ) l l / : l l  

(resp. II(w, - u , ; l l  ~ II (w,-1-  u,-,)+ll + ( a ,  - a, - , ) l l f ; l l ) .  

It follows that 

[ ll(u, - w,;ll<=ll(uo- Wo)+ll + :~ (ak  - a , - , ) l l / Z l l  
k=l 

(2.13) 

Now, by the Crandall-Liggett theorem (see [6]) 

[ ],:2 
m a x  max  I l a ( t ) - a ,  l l ~ l l a ~  m a x ( a , - a , _ O  r ' i n t / l l ~ l l : ~ e A a o }  

i tE[a~_1,al] 

and then using the continuity of @ 

max max lloa(t)-oa, ll_-<p(~,6) withlimlimp(e, 8)=O. 
i tE[ai_l,ai] 8~0 ~0 

Then, using the estimates of (2.1) we obtain (2.9), passing to the limit in (2.13) 
when e ~ 0 a n d  8 ~ 0 .  

REMARK 4. Theorem 2 is one of the results we may obtain in this abstract 
framework. It does not cover all the circumstances of Theorem 1; for this we 
should have to use evolution equations of the general type 

du (t) + A ( t ) u ( t )  ~ 0 
dt 

governed by operators A (t) depending on the time variable t. We leave the 

reader to obtain more general statements by meeting the above arguments and 

the theory of general evolution equations. 
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3. Examples 

In this section we want to give some applications of Section 2 to several 

Cauchy problems that are "well posed" in LI(I~) and, in particular, to certain 

formulations which contain those in Section 1. 

We recall that if f~ is a general measure space with nonnegative measure, an 

operator A in L~(f~) is T-accretive iff 

v, - v2 + (v, - 2) > 0 V(u,, v,), (uz, v2) �9 A, 
UI~'U2] WI=U2] 

where [u > 0 ]  (resp. [u =0])  is the set {x E f t :  u ( x ) > O  (resp. u(x)  = 0)}. (See 

e.g. [3].) 

In order to obtain a general class of T-accretive operator in L l(f~), let us 

denote by L (f~) the linear space of all the measurable functions defined a.e. on f~ 

and by L an (not necessarily linear) application from D(L)C L(I~) into LI(I~) 

satisfying 

(3.1) f Lw'-Lw2> ( (Lw1-Lw2) + Vw1, w2eD(L) 
,~1>w21 JIwl=Wz] 

(we will give below examples of such a class of operators). Let also ~b:f~ x 

R---> ~ ( R )  be monotone with respect to r, i.e., 

(3.2) r~ < r2 f f  S l=  s2 a.e. x �9 f~, Vs~ �9 ~b(x, rl), s2 �9 ~b2(x, r2). 

Then it is easy to see that the operator A = L~b is T-accretive in Lm(f~)when L 6  

is naturally defined by its graph: 

L~b = {(u, v) �9 LI(f~) x LI(I~); 3w �9 D(L), v �9 Lw and 

(3.3) 
w(x) �9 ~b(x, u(x)) a.e. x �9 f~}. 

In order to apply Theorem 2, we consider a function O : D ( O ) C  f~ x R---) R 

satisfying 

(i) for a.e. x E f t ,  D x ( O ) =  {r : (x ,r )ED(O)}  is a closed set in 

R and the application r---> @(x, r) (defined on Dx (O))  is con- 

tinuous, 

(3.4) (ii) for every r �9 R, IL ( O ) =  {x : (x, r ) � 9  D(O)}  is a measura- 

ble set in f~ and the function x---> | (x, r) (defined on I L ( O ) ) i s  
measurable, 

(iii) [O(x,r)l<=c(x)+colrl, V ( x , r ) � 9  for some c � 9  
Ll(f~) and co>O. 
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Then the application 19 : u --~ | ( . ,  u)  defined on 

D(O)  = {u E L l(l~) : (x, u(x )) E D( ~ ) a.e. x Ef t}  

is continuous from D(19) into L~(I~). 

We may now state the following version of Theorem 2 which is an immediate 

corollary from the above considerations. 

THEOREM 3. Let L :D(L)CL(I'~)--~L~(Y~), th, 4; : f ~ •  and 
~ : D ( |  satisfying (3.1), (3.2) and (3.4) respectively. Let also 
f ~ L 1(0, T : L ~(~)), u o, ~ o ~ L 1(12) and u, ~ be mild solutions of ACP(Lth,/, u 0) 

and ACP(L4;, 0, ti ~ respectively. Finally, assume 

(3.5) R ( I + I L 6 ) D  D+(L6) VI >0 ,  

(3.6) ~o E P § 

(3.7) D ( ~ ) C D ( @ ) a n d  4;(x,r)Cq)(x,@(x,r)) V(x,r)ED(4;) ,  

(3.8)r E D, (| r - @ (x, r) is nondecreasing (resp. nonincreasing ) a.e. x EII. 

Then for every t E [0, T] 

fo fo f0fo (u ( t ) - t~ ( ' , a ( t ) ) )  + <- - ( u ~  rio))+ + f('t)+dr 

(resp. ~. ( |  a ) ) -u( t ) )+<= f ,  (@( ' , t i~  - u~ + f2 f• f (r)-dr)  . 

REMARK 5. The assumptions (3.7) and (3.8) generalize the condition (1.3) of 
Theorem 1. Indeed, for ~b, q~ : ~  x R---~ ~(R),  (3.7) leads to 

(3.9) |  4; (x ,r ) )V(x ,r)ED(~)(D(4;)CD(@))  

where ~b : f~ • R ~ ~ (R) is defined by 

(3.10) r ~ t~(x, s) <::> s E ~b(x, r). 

For simplicity, let now ~b, 4; E CI(R) with ~b'> 0 and 4;' > 0 on R. Then (3.9) is 

equivalent to ~ = ~b o 4; and (3.8) is satisfied iff 

~ ' ( r )  = 6 '(q~(r))4; ' (r)-  < 1 (resp. _>- 1) Vr ER.  

That is 
~b'_- < ~'  (resp. ~b'_- > ~')  

which is condition (3.1) of Theorem 1. 
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As a particular corollary of Theorem 3 we state now the comparison between 

the solution of ACP(L~b, 0, u ~ and those ARP(L,  0, th(u~ 

COROLLARY 2. Let L : D ( L ) C  L(f~)---~ LI(I~) satisfying (3.1) and 

(3.11) R ( I + ~ t L )  D D+(L) Vh >0 .  

Let ~b : f~ x R ~ R satisfying 

(3.12) 

x ~ ~b(x, r) is measurable for every r E R, 

r ---* ~b(x, r) is nondecreasing Lipschitz continuous of constant k 

(independent of x )  and ~l,(x,O)= 0 for a.e. x E IL 

Let ~b : f~ x R ~  ~ ( R )  defined by (3.10). Finally, let w ~ E D+(L ) and w, u be mild 

solutions of ACP(L, 0, w 0), ACP(Lqb, 0, u o) respectively where u ~ x ) = tp ( x, w ~ x ) ) 

a.e. x E ~. Then 

x)) Vt=>0, a.e. x EO.  

PROOF. It suffices to apply Theorem 3 to the choices 

 w0 x, and ~ ( x , r ) = . ,  x, , , x  . 

(It is easy to check that really a is a mild solution of ACP(Ld~,0, t~~ 

REMARK 6. Let us now discuss the range condition (3.5). More generally we 

will comment on the range of I + Lth (i.e., for greater simplicity in the notation 

we replace 4~ by th and )tL by L). From the definition of the operator L we have 
for a given f E L I(I)): 

f E R (I + L(9) r162 u E L~(l)) and w E D ( L  ) 
(3.13) 

u + Lw, f?_ solutions of w ( x ) ~ q b ( x , u ( x ) )  a.e. x E l ) .  

The simplest way to solve (3.13) is to use the inverse graph t~ of ~b defined by 

(3.10), since (3.13) leads to 

In others words 

f E u + L w ,  u ( x ) E ~ ( x , w ( x ) )  a.e. x E f L  

f E R ( I + L 4 ~ )  r f E  R(O +L) .  

This is the objective of the Br6zis-Strauss Theorem ([5]) and its generalizations 

(see [11, [41). 
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EXAMPLE 1. AS a typical example of operator L we have 

(3.14) L = - A  defined on D ( L ) = { w  E W~'I(I~):Aw ELI(I~)}, 

where 12 is a bounded open set in R N with smooth boundary a12. For this 

operator the Cauchy problem ACP(/L~b,f, u ~ leads to { u,-A~(.,u)~f onO, 

(3.15) q~(., u ) 9 0  on E, 

u ( 0 , . ) =  u ~ on fL 

For f = 0  this is the Cauchy problem CP(~b,0, u ~ of Section 1. The main 

difference with the above formulation is that now we need no regularity on the 

data (6,f ,  u~ �9 
In this example the range condition 

(3.16) R (I + hL6)  = L ' (~ )  VA > 0 

is satisfied under two kinds of hypothesis: 

Case 1. ~b is any maximal monotone graph in R 2 independent of x and with 

0 ~  R(~b). Then (3.16) is the result of [5]. 

Case 2. ~ b i s g i v e n b y ( 3 . 1 0 ) w i t h ~ b : t ~ •  e.g., the condition 

(3.12) in which case (3.16) is obtained in [1] (section 2). 

By using extensions of the Br6zis-Strauss Theorem, we can apply our 

Theorem 3 to Cauchy problems more sophisticated than (3.15). For instance: 

(a) the Dirichlet boundary condition may be replaced by a nonlinear bound- 

ary condition of the type 

a r  7 ( . , 6 ( .  u ) ) ~ 0  o n ~  
an 

(see [3]); 
(b) the Laplaeian operator h may be replaced by a nonlinear one like the 

generalized Laplacian 

A v �9 = ~ - for 1 < p  <oo 

(see [1] and [10]); 
(c) the open set l~ may not be assumed bounded like f~ = R N (see [2]). 

EXAMPLE 2. Let f~ = ]a, b[ and consider L given on X = L~([a, b]) by 

D ( L )  = {u E C([a, b]):  u(0) = 0 and u is absolutely continuous} 
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and 

du 
Lu  = d---x if u ~ D (L). 

Thus L is an accretive operator, in L l([a, b]), and given ~b satisfying (3.2)it is 

easy to see that hypothesis (3.16) holds (see e.g. [6] or [3]). Then the 

ACP(L~b,/, u ~ leads to 

{ u , + c k ( ' , u ) x ~ [  o n ] O , T [ x ] a , b [ ,  

(3.17) 4 ~ ( a , u ( t , a ) ) ~ O  for t ~ ] 0 ,  T[, 

u ( 0 , . ) =  u ~ on ]a,b[ .  

Once more, Theorem 3, Remark 5 and Corollary 2 can be applied to the 

problem (3.17), now of a hyperbolic character. The hypothesis (3.6) pointed out 

that rio must be a nondecreasing function (it is very easy to have counterexam- 

pies which show the necessity of such a condition). On the other hand, we recall 

that even for smooth data (~b, f, u ~ the problem (3.17) does not have a classical 

global solution, and then the mild solutions satisfy the equation in an adequate 

sense already pointed out by Kruskov (see e.g. [3] for this coincidence when 

f~ = R~'). 
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